Petroleum engineering

Petroleum engineering is an engineering discipline concerned with the activities related to the production of hydrocarbons, which can be either crude oil or natural gas. Subsurface activities are deemed to fall within the upstream sector of the oil and gas industry, which are the activities of finding and producing hydrocarbons. Refining and distribution to a market are referred to as the downstream sector. Exploration, by earth scientists, and petroleum engineering are the oil and gas industry's two main subsurface disciplines, which focus on maximizing economic recovery of hydrocarbons from subsurface reservoirs. Petroleum geology and geophysics focus on provision of a static description of the hydrocarbon reservoir rock, while petroleum engineering focuses on estimation of the recoverable volume of this resource using a detailed understanding of the physical behavior of oil, water and gas within porous rock at very high pressure.

The combined efforts of geologists and petroleum engineers throughout the life of a hydrocarbon accumulation determine the way in which a reservoir is developed and depleted, and usually they have the highest impact on field economics. Petroleum engineering requires a good knowledge of many other related disciplines, such as geophysics, petroleum geology, formation evaluation (well logging), drilling, economics, reservoir simulation, well engineering, artificial lift systems, and oil and gas facilities engineering.

Contents

Overview

Petroleum engineering has become a technical profession that involves extracting oil in increasingly difficult situations as much of the "low hanging fruit" of the world's oil fields has been found and depleted. Improvements in computer modeling, materials and the application of statistics, probability analysis, and new technologies like horizontal drilling and enhanced oil recovery, have drastically improved the toolbox of the petroleum engineer in recent decades.

Deep-water, arctic and desert conditions are commonly contended with. High Temperature and High Pressure (HTHP) environments have become increasingly commonplace in operations and require the petroleum engineer to be savvy in topics as wide ranging as thermo-hydraulics, geomechanics, and intelligent systems.

The Society of Petroleum Engineers (SPE) is the largest professional society for petroleum engineers and publishes much information concerning the industry. Petroleum engineering education is available at 17 universities in the United States and many more throughout the world - primarily in oil producing regions - and some oil companies have considerable in-house petroleum engineering training classes.

Petroleum engineering has historically been one of the highest paid engineering disciplines, although there is a tendency for mass layoffs when oil prices decline. In a June 4th, 2007 article, Forbes.com reported that petroleum engineering was the 24th best paying job in the United States.[1] The 2010 National Association of Colleges and Employers survey showed petroleum engineers as the highest paid 2010 graduates at an average $125,220 annual salary.[2] For individuals with experience, salaries can go from $170,000 to $260,000 annually.

Types

Petroleum engineers divide themselves into several types:

See also

References

External links